Solvent effect on the aggregation behavior of rod-coil diblock copolymers.
نویسندگان
چکیده
The water-induced aggregation behavior of rod-coil diblock copolymers based on poly(ethylene oxide) (PEO) and poly{(+)-2,5-bis[4'-((S)-2-methylbutoxy)phenyl]styrene} (PMBPS), PEO104-b-PMBPS53, was investigated in the common solvent THF and in the selective solvent dioxane. Before adding water, PEO104-b-PMBPS53 stayed as single polymer chains no matter what conformation the PEO block took (i.e., either the random coil conformation in THF or the compact globule conformation in dioxane). The critical water content ( approximately 6 wt %) at which PEO104-b-PMBPS53 began to aggregate was also similar in both solvents, indicating that PMBPS dominated the aggregation process. However, the size, the size distribution, and the morphology of aggregates in THF/water were quite different from those in dioxane/water. Narrowly distributed spheres with Rh approximately 20 nm were observed in dioxane, whereas in THF, a bimodal distribution peaked at 3 and approximately 300 nm, was observed. The results from 2D wide-angle X-ray diffraction and polarized optical microscopy demonstrated that the PMBPS blocks packed in a parallel pattern upon aggregation in dioxane/water. The anisotropic disclike structures observed in THF/water also indicated the orientation of the PMBPS blocks upon forming aggregates in dilute solution.
منابع مشابه
Effect of Geometrical Asymmetry on the Phase Behavior of Rod-Coil Diblock Copolymers
The effect of geometrical asymmetry β (described by the length-diameter ratio of rods) on the rod-coil diblock copolymer phase behavior is studied by implementation of self-consistent field theory (SCFT) in three-dimensional (3D) position space while considering the rod orientation on the spherical surface. The phase diagrams at different geometrical asymmetry show that the aspect ratio of rods...
متن کاملSelf-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes
Amphiphilic poly(phenylquinoline)-block-polystyrene rod-coil diblock copolymers were observed to self-organize into robust, micrometer-scale, spherical, vesicular, cylindrical, and lamellar aggregates from solution. These diverse aggregate morphologies were seen at each composition, but their size scale decreased with a decreasing fraction of the rigid-rod block. Compared to coil-coil block cop...
متن کاملSynthesis of a Novel Hybrid Liquid-Crystalline Rod–Coil Diblock Copolymer
A series of novel rod–coil diblock copolymers on the basis of mesogenjacketed liquid-crystalline polymer were successfully prepared by atom transfer radical polymerization from the flexible polydimethylsiloxane (PDMS) macroinitiator. The hybrid diblock copolymers, poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}-blockpolydimethylsiloxane, had number-average molecular weights (Mn’s) ranging fr...
متن کاملAtom-Transfer Radical Polymerization to Synthesize Novel Liquid Crystalline Diblock Copolymers with Polystyrene and Mesogen-jacketed Liquid Crystal Polymer Segments
The synthesis of a series of new rod-coil diblock copolymers with different molecular weights and low polydispersity was achieved by atom transfer radical polymerization. The block architecture (coil-conformation of styrene segment and rigid-rod conformation of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene segment) of the diblock copolymers was experimentally confirmed by proton nuclear magneti...
متن کاملSupramolecular structures from rod-coil block copolymers.
One of the fascinating subjects in areas such as materials science, nanochemistry, and biomimetic chemistry is concerned with the creation of supramolecular architectures with well-defined shapes and functions. Self-assembly of molecules through noncovalent forces including hydrophobic and hydrophilic effects, electrostatic interactions, hydrogen bonding, microphase segregation, and shape effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2008